
What’s New in
Java 8

Presented by Jeanne Hiesel

21 April 2014

Factoids
• 56 (give or take) JEP’s covered over seven

milestones

• Relatively narrow scope in number of jdk segments

affected [i.e. --/--, core/(6 sub), vm/(3 sub),

web/jaxp]

• Released 3/18/2014

• Only showstopper bugs are in the release, non-

showstoppers have been deferred

• Webcast of launch by Mark Reinhold on March 25th

• www.oracle.com/events/us/en/java8/index.html

http://www.oracle.com/events/us/en/java8/index.html

JSR
• JSR 335: Language-level support for

lambda expressions (officially, lambda
expressions; unofficially, closures) under
Project Lambda.

• JSR 223: Project Nashorn, a Javascript
runtime which allows developers to
embed Javascript code within
applications

• JSR 308: Annotations on Java Types

• JSR 310: Date and Time API

M1
• core/lang

o JEP117

• Remove the Annotation-Processing Tool (apt)

its associated API, and the documentation

from the JDK.

M3
• core/sec

o JEP124

• Improve/Enhance the certificate revocation-checking

API to support best-effort checking, end-entity

certificate checking, and mechanism-specific options
and parameters.

o JEP130

• Implement the SHA-224 message-digest algorithm and

related algorithms.

o JEP131

• Include the Sun PKCS#11 Crypto Provider in the JDK for

64-bit Windows.

M4
• core/libs

o JEP112

• Improve the maintainability and performance of the

standard and extended charset implementations.

• core/sec
o JEP129

• Provide implementations of the cryptographic

algorithms required by NSA Suite B.

M5
• vm/gc

• vm/rt

• core/--

• core/lang

• core/libs

• core/i18n

• core/sec

M5
• vm/gc

o JEP122

• Remove the permanent generation from the Hotspot JVM and

thus the need to tune the size of the permanent generation.

• vm/rt
o JEP136

• Provide additional contextual information about bytecode-

verification errors to ease diagnosis of bytecode or stackmap

deficiencies in the field.

• core/--
o JEP153

• Enhance the java command-line launcher to launch JavaFX

applications.

M5
• core/lang

o JEP105

• Extend the Compiler Tree API to provide structured access to

the content of javadoc comments.

o JEP106

• Extend the javax.tools API to provide access to javadoc.

• core/libs
o JEP177

• Optimize java.text.DecimalFormat.format by taking

advantage of numerical properties of integer and floating-

point arithmetic to accelerate cases with two or three digits

after the decimal point.

M5
• core/i18n

o JEP127

• Create a tool to convert LDML (Locale Data Markup

Language) files into a format usable directly by the runtime

library, define a way to package the results into modules, and

then use these to incorporate the de-facto standard locale

data published by the Unicode Consortium’s CLDR project into

the JDK.

o JEP128

• Define APIs so that applications that use BCP 47 language tags

(see RFC 5646) can match them to a user’s language

preferences in a way that conforms to RFC 4647.

o JEP133

• Extend existing platform APIs to support version 6.2 of the

Unicode Standard.

M5
• core/sec

o JEP113

• Add the MS-SFU extensions to the JDK’s Kerberos 5

implementation.

o JEP114

• Add support for the TLS Server Name Indication (SNI)

Extension to allow more flexible secure virtual hosting

and virtual-machine infrastructure based on SSL/TLS
protocols.

o JEP121

• Provide stronger Password-Based-Encryption (PBE)

algorithm implementations in the SunJCE provider.

M6
• --/--

• vm/--

• vm/gc

• vm/rt

• core/lang

• core/sec

M6
• --/--

o JEP138

• Introduce autoconf (./configure-style) build setup, refactor the

Makefiles to remove recursion, and leverage JEP 139

(Enhance javac to Improve Build Speed).

o JEP160

• Improve the implementation of method handles by replacing

assembly language paths with an optimizable intermediate

representation and then refactoring the implementation so

that more work is done in portable Java code than is

hardwired into the JVM.

o JEP164

• Improve the out-of-box AES Crypto performance by using x86

AES instructions when available, and by avoiding unnecessary

re-expansion of the AES key.

M6
• vm/--

o JEP142

• Define a way to specify that one or more fields in an object are likely
to be highly contended across processor cores so that the VM can
arrange for them not to share cache lines with other fields, or other
objects, that are likely to be independently accessed.

• vm/gc
o JEP173

• Remove three rarely-used combinations of garbage collectors in
order to reduce ongoing development, maintenance, and testing
costs.

• vm/rt
o JEP147

• Reduce the HotSpot’s class metadata memory footprint in order to
improve performance on small devices.

o JEP148

• Support the creation of a smaller VM that is no larger than 3MB.

M6
• core/lang

o JEP139

• Reduce the time required to build the JDK and enable

incremental builds by modifying the Java compiler to
run on all available cores in a single persistent process,

track package and class dependences between

builds, automatically generate header files for native

methods, and clean up class and header files that are
no longer needed.

o JEP172 DocLint

• Provide a means to detect errors in Javadoc comments

early in the development cycle and in a way that is
easily linked back to the source code.

M6
• core/libs

o JEP103

• Add additional utility methods to java.util.Arrays that use the

JSR 166 Fork/Join parallelism common pool to provide sorting

of arrays in parallel.

o JEP135

• Define a standard API for Base64 encoding and decoding.

o JEP149

• Reduce the dynamic memory used by core-library classes

without adversely impacting performance.

o JEP150

• Define a new date, time, and calendar API for the Java SE

platform.

o JEP170

• Minor enhancements to JDBC to improve usability and

portability, now V4.2

M6
• core/sec

o JEP166

• Facilitate migrating data from JKS and JCEKS keystores

by adding equivalent support to the PKCS#12 keystore.
Enhance the KeyStore API to support new features such

as entry metadata and logical views spanning several

keystores. Enable the strong crypto algorithms

introduced in JEP-121 to be used to protect keystore
entries.

M7
• --/--

• vm/rt

• core/lang

• core/libs

• core/net

• core/sec

• web/jaxp

M7
• --/--

o JEP126

• Add lambda expressions (closures) and supporting features,

including method references, enhanced type inference, and

virtual extension methods, to the Java programming language

and platform.

o JEP161

• Define a few subset Profiles of the Java SE Platform

Specification so that applications that do not require the entire

Platform can be deployed and run on small devices.

o JEP162

• Undertake changes to smooth the eventual transition to

modules in a future release, provide new tools to help

developers prepare for the modular platform, and deprecate

certain APIs that are a significant impediment to

modularization.

M7
• --/--

o JEP174

• Design and implement a new lightweight, high-performance

implementation of JavaScript, and integrate it into the JDK. The new

engine available to Java applications via the existing javax.script API,

and a new command-line tool.

o JEP176

• Improve the security of the JDK’s method-handle implementation by

replacing the existing hand-maintained list of caller-sensitive

methods with a mechanism that accurately identifies such methods

and allows their callers to be discovered reliably.

o JEP179

• There is a long-standing shortcoming in the JDK in terms of clearly

specifying the support and stability usage contract for com.sun.*

types and other types shipped with the JDK that are outside of the

Java SE specification. These contracts and potential evolution policies

should be clearly captured both in the source code of the types and

in the resulting class files. This information can be modeled with JDK-

specific annotation types.

M7
• vm/rt

o JEP171

• Add three memory-ordering intrinsics to the sun.misc.Unsafe class.

• core/lang
o JEP101

• Smoothly expand the scope of method type-inference to support (i)
inference in method context and (ii) inference in chained calls.

o JEP104

• Extend the set of annotatable locations in the syntax of the Java
programming language to include names which indicate the use of a type
as well as (per Java SE 5.0) the declaration of a type.

o JEP118

• Provide a mechanism to easily and reliably retrieve the parameter names
of methods and constructors at runtime via core reflection.

o JEP120

• Change the Java programming language to allow multiple application of
annotations with the same type to a single program element.

M7
• core/libs

o JEP107

• Add functionality to the Java Collections Framework for bulk

operations upon data. This is commonly referenced as

“filter/map/reduce for Java.” The bulk data operations include

both serial (on the calling thread) and parallel (using many

threads) versions of the operations. Operations upon data are

generally expressed as lambda functions.

o JEP109

• Enhance the Java core library APIs using the new lambda

language feature to improve the usability and convenience of

the library.

o JEP119

• Provide an implementation of the javax.lang.model.* API

backed by core reflection rather than by javac. In other words,

provide an alternate API to access and process the reflective

information about loaded classes provided by core reflection.

M7
• core/libs

o JEP155

• Scalable updatable variables, cache-oriented

enhancements to the ConcurrentHashMap API,

ForkJoinPool improvements, and additional Lock and

Future classes.

o JEP178

• Enhance the JNI specification to support statically linked

native libraries.

o JEP180

• Improve the performance of java.util.HashMap under

high hash-collision conditions by using balanced trees

rather than linked lists to store map entries. Implement
the same improvement in the LinkedHashMap class.

M7
• core/net

o JEP184
• Define a new type of network permission which grants access in terms of URLs

rather than low-level IP addresses.

• core/sec
o JEP115

• Support the AEAD/GCM cipher suites defined by SP-800-380D, RFC 5116, RFC
5246, RFC 5288, RFC 5289 and RFC 5430.

o JEP123
• Enhance the API for secure random-number generation so that it can be

configured to operate within specified quality and responsiveness constraints.
o JEP140

• Enable code to assert a subset of its privileges without otherwise preventing the
full access-control stack walk to check for other permissions.

• web/jaxp
o JEP185

• Upgrade JAXP to version 1.5, which adds the ability to restrict the set of network
protocols that may be used to fetch external resources.

Books Already Available
• Java 8 In Action (Urma, Fusco, Mycroft - Manning

MEAP)

• Java SE 8 for the Really Impatient (Cay S.

Horstmann, Addison-Wesley Professional,

Publication Date: January 24, 2014 | ISBN-10:

0321927761 | ISBN-13: 978-0321927767 on Amazon)

• Java 8 Lambdas: Pragmatic Functional

Programming (O’Reilly)

• What's New in Java 8: An unofficial guide (Adam L.

Davis, LeanPub)

• plus others…..

Pause for
Q & A

The Main Features
• Lambdas (to be covered in detail next)

• Streams (my favorite) (or the Stream API)

• Default methods/ functional interfaces (functional

programming capability)

• java.time package (alias new Date and Time API)

• Concurrency enhancements

• Nashorn Javascript engine (potential presentation

here… No, not for me….one of you!)

Lambdas
• Implemented support for lambda expressions and

virtual extension methods

• Improved multicore support using enabling internal

iterations

• Also known as ‘closures’ which feature prominently

in JVM languages like Groovy, Scala, and Clojure

• To allow code to be streamlined

• Translated into functional interface at compile time

• Can be passed to utility functions

Streams
• 2 modes – sequential and parallel

• Makes collections more flexible and
efficient

• Meant to be used with closures/lambdas
using a clearer, terser syntax

• Not meant to replace ArrayLists

• Meant make manipulating data more
efficient and compete for a share of the ‘Big
Data’ market

• java.util.stream allows use of
filter/map/reduce type operations

Streams
• Can use fork/join parallelism

• Can be infinite but are lazy

• java.util.stream allows use of
filter/map/reduce type operations

• java.util.stream.Stream serves as gateway to
bulk data operations

• Source data is not mutated during
operations

• Can use collections and generators as
sources

• More than 40 operations to choose from

Streams
List entries = …

• Sequential
List<Entry>entry = list.getStream.collect(Collectors.toList()));

Stream stream = entries.stream();

• Parallel
List<Entry>entry = list.getStream.parallel().collect(Collectors.toList()));

Stream parallelStream = entries.parallelStream();

List blogNotes = entries.stream()

.parallel()

.filter(e -> e.getEntryDate > 12/31/2014) // concurrent

.sequential()

.map(Entry::new)

.collect(Collectors.toCollection(ArrayList::new));

Functional Interfaces and
Default Methods

• Default methods added to interface

• Don’t have to be overridden in the interface

• Can be run directly from interface

• Done for backward compatibility

• Also to allow addition of Stream without
having to change all the classes to
implement new method

• Code examples should be part of the
Lambda presentation next month

java.time

• JSR310

• Derived from popular Joda Time library

• Meant to eliminate some of the date and

time #%@# we currently have to do

Concurrency enhancements

• To take advantage of lambda expressions

• Provide performance improvements for

shared counters and hash tables

• Some examples provided as part of Stream

• Some more examples should be part of the

Lambdas presentation

Concurrency enhancements

List entries =

 asList(new Entry(“one”), new Entry(“two”), new Entry(“three”));

• Before Java 8

For (Entry entry : entries) { takeSomeAction(entry); }

• Java 8

Entries.forEach(this::takeSomeAction);

Javascript engine

• Nashorn Javascript engine

 (potential presentation here… No, not for

me….one of you!)

• JavaFX designed to replace the Swing GUIs

Q & A

Pages Referenced

• http://openjdk.java.net/projects/jdk8/

• http://openjdk.java.net/projects/lambda/

• https://jdk8.java.net/
• http://bugs.java.com/

• http://www.javacodegeeks.com/

• http://www.i-programmer.info/news/80-java/7048-java-se-8-
imminent.html

• http://www.oracle.com/technetwork/java/javase/community
/index.html (Bug Database)

• http://java.dzone.com/articles/whats-new-java-8-part-i-javafx

• https://blogs.oracle.com/thejavatutorials/entry/jdk_8_docum
entation_developer_preview

• https://blogs.oracle.com/java/entry/java_se_8_schedule

• http://docs.oracle.com/javase/tutorial/java/javaOO/lambda
expressions.html

• http://www.infoq.com/articles/javaone2013-roundup
• http://www.infoq.com/articles/Java-7-Features-Which-Enable-

Java-8

http://openjdk.java.net/projects/jdk8/
http://openjdk.java.net/projects/jdk8/
http://openjdk.java.net/projects/lambda/
http://openjdk.java.net/projects/lambda/
https://jdk8.java.net/
https://jdk8.java.net/
http://bugs.java.com/
http://bugs.java.com/
http://www.javacodegeeks.com/
http://www.javacodegeeks.com/
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.i-programmer.info/news/80-java/7048-java-se-8-imminent.html
http://www.oracle.com/technetwork/java/javase/community/index.html
http://www.oracle.com/technetwork/java/javase/community/index.html
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
http://java.dzone.com/articles/whats-new-java-8-part-i-javafx
https://blogs.oracle.com/thejavatutorials/entry/jdk_8_documentation_developer_preview
https://blogs.oracle.com/thejavatutorials/entry/jdk_8_documentation_developer_preview
https://blogs.oracle.com/java/entry/java_se_8_schedule
https://blogs.oracle.com/java/entry/java_se_8_schedule
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://www.infoq.com/articles/javaone2013-roundup
http://www.infoq.com/articles/javaone2013-roundup
http://www.infoq.com/articles/javaone2013-roundup
http://www.infoq.com/articles/javaone2013-roundup
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8
http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8

